A new proof of Nash's Theorem via exchangeable equilibria

نویسندگان

  • Noah D. Stein
  • Pablo A. Parrilo
  • Asuman E. Ozdaglar
چکیده

We give a novel proof of the existence of Nash equilibria in all finite games without using fixed point theorems or path following arguments. Our approach relies on a new notion intermediate between Nash and correlated equilibria called exchangeable equilibria, which are correlated equilibria with certain symmetry and factorization properties. We prove these exist by a duality argument, using Hart and Schmeidler’s proof of correlated equilibrium existence as a first step. In an appropriate limit exchangeable equilibria converge to the convex hull of Nash equilibria, proving that these exist as well. Exchangeable equilibria are defined in terms of symmetries of the game, so this method automatically proves the stronger statement that a symmetric game has a symmetric Nash equilibrium. The case without symmetries follows by a symmetrization argument.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A partial proof of Nash's Theorem via exchangeable equilibria

We give a novel proof of the existence of Nash equilibria in all finite games without using fixed point theorems or path following arguments. Our approach relies on a new notion intermediate between Nash and correlated equilibria called exchangeable equilibria, which are correlated equilibria with certain symmetry and factorization properties. We prove these exist by a duality argument, using H...

متن کامل

A generalisation of Nash's theorem with higher-order functionals

The recent theory of sequential games and selection functions by Martin Escardó and Paulo Oliva is extended to games in which players move simultaneously. The Nash existence theorem for mixed-strategy equilibria of finite games is generalised to games defined by selection functions. A normal form construction is given which generalises the game-theoretic normal form, and its soundness is proven...

متن کامل

A generalization of Nash's theorem with higher-order functionals

The recent theory of sequential games and selection functions by Escardó & Oliva is extended to games in which players move simultaneously. The Nash existence theorem for mixed-strategy equilibria of finite games is generalized to games defined by selection functions. A normal form construction is given, which generalizes the game-theoretic normal form, and its soundness is proved. Minimax stra...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

On Tychonoff's type theorem via grills

‎Let ${X_{alpha}:alphainLambda}$ be a collection of topological spaces‎, ‎and $mathcal {G}_{alpha}$ be a grill on $X_{alpha}$ for each $alphainLambda$‎. ‎We consider Tychonoffrq{}s type Theorem for $X=prod_{alphainLambda}X_{alpha}$ via the above grills and a natural grill on $X$ ‎related to these grills, and present a simple proof to this theorem‎. ‎This immediately yields the classical theorem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1005.3045  شماره 

صفحات  -

تاریخ انتشار 2010